

CNS Data Link

Avionics Manufacturer Perspective

Advanced Technology Center Steve Koczo

1 May 2001

- Current versus Future Airspace System (CNS / ATM)
- Customer's View
- CNS Data Link Applications Overview
 - Communications Characteristics, Trends
 - VDL and SATCOM
- Example Applications
 - Surface Operations
 - Uplink Weather
- Summary of Issues

Current Air Traffic Control System

Future Air Traffic Management System

Transition Elements

Procedural Separation To Performance Based Separation
Transition from Ground-Based to Space-Based Navigation
Transition from Voice-Based to Digital Data-Based Communications
Transition from Ground-Based Air Traffic Control to a Managed Environment with Shared Responsibility

CNS / ATM Environment

Our Customers - Diverse Markets, Common Airspace

Air Transport

Direct Operating Cost Driven
Growth & Flexibility Key Issues
Will Drive New Airspace Definition

Common Airspace

CNS/ATM Transition Driven
Common Rules
Common Function/Applications

Government

Global Mission Capability
Commercial Airspace Compatible
COTS Desire

Commuter/Business

Follow Air Transport Technology Convergence With Airline Ops Integrated Solutions At OEM

What Will Make Customers Buy CNS / ATM?

- Positive Cost-Benefit Analysis
 - Short Term Payback Oriented
 - May Work For Incremental Enhancements
 - Must Demonstrate Business Case
- Cost Avoidance
 - Must Establish Credible Future Scenario
 - Longer Term Investment Oriented
- Competitive Position
 - Project Impact To Revenue
 - Longer Term Investment Oriented
- Fear Factor
 - Denial Of Access To Airspace via Mandates Or "Segregated Airspace"

Key Customer Requirements

- Value-Added Solutions to Operational Problems
 - Short-Term Payback
- Highly Reliable Avionics
 - Meet or Exceed Safety and Performance Requirements
 - High MTBF, Integrity, Low No-Fault-Found
- Low-Cost, Simplified Upgrades to Future Capability
- Reduced Physical Impact on Aircraft
 - Reduced Aircraft Wiring, Fewer Antennas, Reduced Weight / Size, Lower Power, Passive Cooling
- Maintainable

CNS Data Link Applications - Overview

Data Link - Cabin & Flight Deck

CNS Data Link - Applications Overview

Service Category	CNS Application	Candidate Data Link(s)	Type of Service
Air Traffic Control (ATC)	ADS-A / ADS-C	VHF Data Link (VDL) Mode 2, 3; SATCOM, HF DL SATCOM, HF DL, VDL	Addressed two-way data link, networked via ATN, strategic comms Addressed two-way data link, ATN, strategic comms
Air Traffic Services (ATS)	FIS, FIS-B - Predeparture Clearance - Digital ATIS, - Uplink Weather, - Graphical NOTAMS, - Etc.	VDL, UAT, Satellite Communications	Broadcast and addressed comms, higher bandwidth
Surveillance	ADS-B, TIS-B	Mode-S, UAT, VDL-4	Broadcast surveillance reports, tactical
Navigation	DGPS/DGNSS	VDL	Broadcast navigation uplink / diff. corrections, tactical
AOC/AAC	Various airline comms	VDL, SATCOM, HF DL	Addressed two-way data link, ATN, strategic comms
APC	Cabin telephone, information, entertainment	Satellite communications, VDL	Passenger services; high-bandwidth broadcasts, addressed comms

Data Link Comm Characteristics

- Increasing Number of Communication Services / Applications are Vying for Limited Data Link Resources
- Range of Required Communications Performance
 - Coverage (Terrestrial, Oceanic, Long / Short Range)
 - Broadcast or Addressed
 - Latency (Low for Tactical, Moderate for Strategic)
 - Bandwidth, Data Rate
 - Specific versus Networked (ATN) Communications
 - Range of System Criticality (Integrity / Continuity / Availability)
 - ATC / ATS Comms versus APC Comms
 - Spectrum Use / Assignment (C, N, S, other)

CNS Data Link Communications - Trends

- Advanced CNS Applications are Moving Toward More Autonomous, Multi-Thread Communications
 - Multiple Data Link Services via Same Data Link Resource / Media to Support Several Applications
 - E.g., Capstone Utilizes UAT for ADS-B and FIS-B, i.e.,
 Supporting Applications for Free Flight and Air Traffic
 Management (ATM) lead to Multi-Thread Communications
 - VDL-4 Simultaneous Use for CPDLC, ADS-B, Etc
- Planned VDL-2 /3 and INMARSAT SATCOM to Provide Current High-Bandwidth Standards (31.5 kbps & 64 kbps, respectively)
 - Particularly for Air Transport Category Aircraft
 - UAT Role for General Aviation (?)

CNS Data Link Communications - Trends (ctd)

- Potential for Significant Increase in VDL Resource Use
 - CPDLC, FIS-B, AOC/AAC, ADS-B (VDL-4), etc.
 - High-Data Rate Waveforms Stressing Robustness for Frequency Reuse and Isolation (Desired/Undesired)
 - Multiple VDL TXs/RXs On Aircraft Creating Problem With Isolation, I.e., Self-Interference
 - Aircraft Typically Utilize 3 VHF/VDL Radios; Could Grow Considerably Due to ADS-B (VDL-4) and FIS-B Use
- Future High-Bandwidth Satellites Being Considered for Wide-Coverage Services of Weather Data, and Cabin Information Services (Broadcast and Addressed)
 - Aviation Unable to Compete with Commercial Use for These High-Value Resources (e.g., XM radio)
 - Integrity Issue for Some Avionics Applications

Aircraft Antennas - VHF Antenna Isolation

Antenna Considerations Impact Radio Designs & Architecture

Co-Channel Interference - Reuse Distance

Facility Separation for Two-Way Data Link Communications

Facility Separation for Ground Broadcast Data Link Communications

Example Applications

Low Visibility Landing and Surface Operations (LVLASO)

T-NASA Display Format - NASA Langley/Ames

Uplink of Weather Information

Summary of Issues

- CNS Data Links are Becoming More Pervasive
 - Serve as Backbone for Advanced CNS/ATM Apps
- Proper Allocation of Data Link Services to Data Links
- Data Link Interoperability Among Users
- Integrity Assurance of Autonomous, Multi-Thread Comms
- Spectrum
 - Must Provide Needed Data Capacity / Bandwidth
 - Protect Existing Aviation Spectrum
 - Develop Future Data Links (Waveforms, Protocols)
 that Co-Exist / Share Spectrum with Legacy Systems
 - E.g., 960 MHz to 1215 MHz
- Protection Against Ultra Wideband Interference

Summary of Issues

- Multiple VDL TXs/RXs on Aircraft
 - Ability to Achieve Sufficient Isolation to Avoid Self-Interference
 - Impact on Radio Design / Architecture
- Aviation Industry's Access to Wide Coverage, High-Bandwidth Satellite Data Links for Safety Services (e.g., Uplink Weather, etc)
 - Low-Cost Satellite Antenna and Radio Avionics
 - Difficult Economic Case Against Commercial Users (E.g., XM Radio, SIRIUS)
 - Need for Government Sponsorship of Such Services ?
- Resolution of ADS-B Data Link
 - Multi-Link Environment? Interoperability?